Some approximation algorithms for the clique partition problem in weighted interval graphs

نویسندگان

  • Mingxia Chen
  • Jianbo Li
  • Jianping Li
  • Weidong Li
  • Lusheng Wang
چکیده

Interval graphs play important roles in analysis of DNA chains in Benzer [S. Benzer, On the topology of the genetic fine structure, Proceedings of the National Academy of Sciences of the United States of America 45 (1959) 1607–1620], restriction maps of DNA in Waterman and Griggs [M.S. Waterman, J.R. Griggs, Interval graphs and maps of DNA, Bulletin of Mathematical Biology 48 (2) (1986) 189–195] and other related areas. In this paper, we study a new combinatorial optimization problem, named the minimum clique partition problem with constrained bounds, in weighted interval graphs. For a weighted interval graph G and a bound B, partition the weighted intervals of this graph G into the smallest number of cliques, such that each clique, consisting of some intervals whose intersection on a real line is not empty, has its weight not beyond B. We obtain the following results: (1) this problem is NP-hard in a strong sense, and it cannot be approximated within a factor 2 − ε in polynomial time for any ε > 0; (2) we design three approximation algorithms with different constant factors for this problem; (3) for the version where all intervals have the same weights, we design an optimal algorithm to solve the problem in linear time. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAXIMUM CLIQUE and MINIMUM CLIQUE PARTITION in Visibility Graphs

In an alternative approach to “characterizing” the graph class of visibility graphs of simple polygons, we study the problem of finding a maximum clique in the visibility graph of a simple polygon with n vertices. We show that this problem is very hard, if the input polygons are allowed to contain holes: a gap-preserving reduction from the maximum clique problem on general graphs implies that n...

متن کامل

Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time

In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...

متن کامل

Maximum Clique and Minimum

In an alternative approach to \characterizing" the graph class of visibility graphs of simple polygons, we study the problem of nding a maximum clique in the visibility graph of a simple polygon with n vertices. We show that this problem is very hard, if the input polygons are allowed to contain holes: a gap-preserving reduction from the maximum clique problem on general graphs implies that no ...

متن کامل

On the complexity of edge-colored subgraph partitioning problems in network optimization

Network models allow one to deal with massive data sets using some standard concepts from graph theory. Understanding and investigating the structural properties of a certain data set is a crucial task in many practical applications of network optimization. Recently, labeled network optimization over colored graphs has been extensively studied. Given a (not necessarily properly) edge-colored gr...

متن کامل

Minimum clique partition in unit disk graphs

The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in unit disk graphs is known to be NP-hard and several constant factor approximations are known, including a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 381  شماره 

صفحات  -

تاریخ انتشار 2007